

Synthesis and Antibacterial Activity of Novel 7-(3-Substituted-3 or 4-trifluoromethyl-1-pyrrolidinyl)-8-methoxyfluoroquinolones

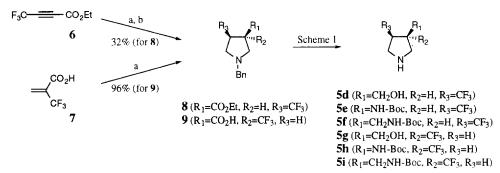
Hideto Fukui,* Tetsuo Shibata, Takanobu Naito, Jun Nakano, Tetsuro Maejima, Hisato Senda, Wakao Iwatani, Yoshiyuki Tatsumi, Masahiro Suda, and Tadashi Arika

Central Research Institute, Kaken Pharmaceutical Co., Ltd., Shinomiya, Minami-kawara-cho, Yamashina-ku, Kyoto 607-8042, Japan

Received 13 April 1998; accepted 2 September 1998

Abstract: The titled compounds were synthesized and evaluated for *in vitro* antibacterial activity. The (3R,4S)-3-aminomethyl-4-trifluoromethyl derivative (S-34109) was confirmed to be optimal because of its superior activity against quinolone and methicillin-resistant *Staphyrococcus aureus* and low side effect potential. © 1998 Elsevier Science Ltd. All rights reserved.

Keywords antibacterials; bacteria; chemotherapy


Since the introduction of antibacterial fluoroquinolones in the early 1980s, this class of compounds has become one of the most attractive agents in the antiinfective chemotherapy field [1]. Frequent clinical use of fluoroquinolones, however, has selected a quinolone-resistant Staphylococcus aureus (SA), in particular, most of which are methicillin-resistant. Prevalence of this organism is a serious problem in clinical settings. Therefore, a novel fluoroquinolone, which possesses potent antibacterial activity against methicillin as well as quinolone-resistant SA, is needed. Among the efforts to discover desirable fluoroquinolones, CI-960, which had the 3-aminopyrrolidine side chain at the 7-position and the chlorine atom at the 8-position of the quinolone nucleus, was reported to have a potent antibacterial activity against quinolone-resistant SA [2], but on the other hand showed a somewhat higher degree of cytotoxicity [3]. Domagala reviewed the structure-activity and structure-side effect relationships of the fluoroquinolones and suggested that the alkyl substitution of the pyrrolidine ring at the 7-position of the quinolone nucleus enhanced potency against Gram-positive bacteria and reduced cytotoxicity [4]. We chose the trifluoromethyl group as the alkyl substituent of the pyrrolidine ring and tried to introduce such a unique pyrrolidine into the quinolone nucleus in order to prepare novel fluoroquinolones which possess potent antibacterial activity against Gram-positive bacteria, especially quinolone-resistant SA with safety. Concerning the quinolone nucleus, we selected the 8-methoxy quinolone for our study considering Matsumotos' report about Q-35, in which they described that the introduction of a methoxy group at the 8-position of the quinolone nucleus made it stable under UV-irradiation [5]. In this paper, we report the synthesis and antibacterial activity of these fluoroquinolone derivatives.

$$H_2N$$
 CI CO_2H I_8 $I_$

Chemistry: The trifluoromethylated pyrrolidines $(5\mathbf{a}\mathbf{-i})$ were prepared as shown in Schemes 1 and 2. The 1,3-dipolar cycloaddition of α , β -unsaturated ester 1 with an azomethine ylide which was provided from amine 2 in the presence of trifluoroacetic acid (TFA) produced the *trans*-pyrrolidine derivative 3 in excellent yield [6]. The 3-hydroxymethyl derivative $5\mathbf{a}$ was obtained from 3 in two steps. The 3-amino and 3-aminomethyl derivatives $(5\mathbf{b}$ and $5\mathbf{c}$) [7] were synthesized starting from carboxylic acid 4 which was obtained by hydrolysis of 3. The *cis*-pyrrolidine derivatives $(5\mathbf{d}\mathbf{-f})$ and 3,3-disubstituted pyrrolidines $(5\mathbf{g}\mathbf{-i})$ were prepared in the same manner as the *trans*-analogs $(5\mathbf{a}\mathbf{-c})$ except using compounds $(5\mathbf{g}\mathbf{-i})$ and $(5\mathbf{g}\mathbf{-i})$ and $(5\mathbf{g}\mathbf{-i})$ and $(5\mathbf{g}\mathbf{-i})$ are spectively.

$$\begin{array}{c} \text{CO}_2\text{Et} \\ & 1 \\ & + \\ & & \\ &$$

Scheme 1. (a) TFA, CH₂Cl₂; (b) NaOH, MeOH; (c) LiAlH₄, THF; (d) H₂, Pd-C, MeOH; (e) DPPA, Et₃N, t-BuOH; (f) SOCl₂, CH₂Cl₂; NH₃; (g) Boc₂O, CH₂Cl₂.

Scheme 2. (a) amine 2, TFA, CH₂Cl₂; (b) H₂, PtO₂, AcOEt-benzene (1:1), AcOH.

As shown in Scheme 3, the pyrrolidines (5a-i) were condensed with the 8-methoxy quinolone (10) to give novel fluoroquinolones (11a-i), respectively. The 3-amino and 3-aminomethyl derivatives (11b-c, 11e-f and 11h-i) were obtained as salts after the removal of the *tert*-butoxycarbonyl (Boc) group by acid treatment.

For comparison with 11c, the *trans*-methyl substituted analog 12 [9] was prepared in the same way as 11c except using ethyl *trans*-crotonate as the starting compound.

Scheme 3. (a) Et₃N, DMSO; (b) deprotection by TFA or HCl.

The optically active trans-3-aminomethyl-4-trifluoromethyl derivatives were synthesized via optical resolution of the carboxylic acid 4 as shown in Scheme 4. A mixture of diastereomeric salts prepared by the treatment of the racemic acid 4 with (R)- α -methylbenzylamine (MBA) was resolved to give the optically active salt 13 (95%ee) [10] which was converted into (3R,4S)-11c in the same manner as in the preparation of the racemate 11c. The enantiomer (3S,4R)-11c was prepared in the same way except for using (S)-MBA as the resolving agent. The absolute configuration of 13 was determined by X-ray crystallographic analysis [11].

Scheme 4. (a) (R)- α -methylbenzylamine (MBA), MeOH.

Results and discussion: The antibacterial activity of the novel fluoroquinolones (11a-i) was tested against 26 representative Gram-positive and Gram-negative strains. The minimum inhibitory concentrations (MICs) of the synthesized compounds, the *trans*-methyl substituted analog 12 and positive controls, ofloxacin (OFLX) and tosufloxacin (TFLX), are shown in Table 1 [12]. The antibacterial activity of the 3-hydroxymethyl-4-trifluoromethyl derivatives (11a and 11d) was superior against quinolone-resistant SA but weak against Gram-negative strains. Among the tested compounds, the 3-amino-4-trifluoromethyl and 3,3-disubstituted derivatives (11b, 11e and 11g-i) showed a remarkable decrease in activity against quinolone-resistant SA. The antibacterial activity of the 3-aminomethyl-4-trifluoromethyl derivatives (11c and 11f) was very potent against Gram-positive bacteria including quinolone-resistant SA. Concerning the activity against Gram-negative strains, compounds 11c and 11f were very similar to that of OFLX and TFLX, respectively. The antibacterial activity of 12 was about 2-fold more active than 11c. On the other hand, the *in vitro* cytotoxicities (IC₅₀: µg/mL) of 11c, 11f, 12 and TFLX were 64, 9.7, 21 and 6.3, respectively [13, 14]. As for the mutagenesis to mice using the micronucleus test, compound 11c was negative at a dose less than 200 mg/kg, whereas 11f and 12 were

Table 1. Antibacterial activity of novel synthesized fluoroquinolones.

	Compound	11a	11 gr	(±)-11c	(3R,4S)-11c (S-34109)	(35,4R)-11c	11d	11e	11f
	7-amine	HO, III.	H ₂ NIII	H ₂ N H ₂ N H ₃ C	H ₂ N (S)	(S) (S) (HC) F ₃ C (H)	F OF	H ₂ N _N H ₃ C	H ₂ N HCI F ₃ C
	Organism			Minimu	Minimum inhibitory co	concentration (MIC, µg/mL	C, µg/mL)		
	Staphylococcus aureus FDA 209P JC-1	0.025	0.1	0.025	0.025	0.05	0.013	0.05	0.025
(Staphylococcus aureus Smith	≥0.006	0.05	≥0.006	>0.006	≥0.006	≥0.006	0.025	≥0.00€
(+)	Staphylococcus aureus JS-1 ^a	0.013	0.05	0.013	>0.00€	0.013	≥0.006	0.05	≥0.006
ure.	Staphylococcus aureus KP-90-3 ^h	0.78	3.13	0.39	0.39	0.78	0.39	1.56	0.2
ıΩ.	Streptococcus pyogenes Cook	0.2	0.39	0.025	0.013	0.025	0.05	0.39	≥0.006
-	Enterococcus faecalis 1373	0.2	0.39	0.05	0.025	0.05	0.1	0.39	0.05
-	Escherichia coli NIHJ JC-2	0.39	0.39	0.1	0.025	0.2	0.39	0.2	0.05
- (-	Escherichia coli ML4707	0.2	0.05	0.05	0.025	0.05	0.2	0.1	0.025
) w	Escherichia coli CSH2/RK1	6.25	3.13	0.78	0.39	3.13	3.13	3.13	0.2
ira.	Escherichia coli CSH2/RE45	6.25	3.13	0.78	0.39	1.56	3.13	3.13	0.2
)	Klebsiella pneumoniae No.42	3.13	0.39	0.2	0.1	0.39	0.78	0.39	0.1
	Klebsiella pneumoniae KC-1	1.56	0.39	0.05	0.05	0.1	0.39	0.2	0.05
	Klebsiella oxytoca GN10650	1.56	0.39	0.1	0.1	0.2	0.78	0.39	0.05
	Proteus vulgaris No.33	0.78	0.39	0.1	0.05	0.39	0.39	0.39	0.05
	Proteus vulgaris KS-134	100	100	50	50	50	100	100	25
	Proteus mirabilis JY-10	0.2	0.2	0.1	0.05	0.2	0.1	0.2	0.025
	Serratia marcescens No.16-2	6.25	3.13	0.39	0.39	0.78	3.13	3.13	0.78
	Enterobacter cloacae Nek39	3.13	3.13	0.39	0.39	1.56	1.56	3.13	0.39
	Citrobacter freundii No.7	12.5	3.13	0.78	0.78	1.56	6.25	3.13	0.78
	Citrobacter freundii KP-29	>100	100	25	12.5	20	>100	100	6.25
	Acinetobacter calcoaceticus No.4	0.78	0.2	0.1	0.1	0.2	0.2	0.2	0.1
	Pseudomonas aeruginosa PAO1	3.13	3.13	1.56	1.56	6.25	3.13	3.13	0.78
	Pseudomonas aeruginosa AK109	6.25	6.25	1.56	1.56	6.25	3.13	6.25	0.78
	Pseudomonas aeruginosa KP-254	>100	>100	100	100	>100	>100	>100	20
	Pseudomonas aeruginosa K-13	25	25	12.5	12.5	50	25	20	3.13
	Burkholderia cepacia 23	3.13	1.56	1.56	1.56	1.56	1.56	1.56	1.56
	Andrew Control of the								

 $^{\it a}$ methicillin-resistant strain. $^{\it b}$ quinolone and methicillin-resistant strain.

Table 1 (Continued)

	Compound	11g	11h	111	12	ofloxacin (OFLX)	tosufloxacin (TFLX)
	7-amine	HO CF ₃	H ₂ Nim CF ₃	H ₂ N CF ₃	H ₂ N H ₂ N H ₂ N H ₂ N		
	Organism		Minim	um inhibitory co	Minimum inhibitory concentration (MIC, μg/mL)	, µg/mL)	
	Staphylococcus aureus FDA 209P JC-1	0.1	0.05	0.2	0.013	0.39	0.05
(Staphylococcus aureus Smith	0.025	≥0.006	0.05	≥0.006	0.2	0.025
+)1	Staphylococcus aureus JS-1ª	0.05	0.025	0.1	≥0.006	0.39	0.05
mer	Staphylococcus aureus KP-90-3 ^b	3.13	1.56	6.25	0.2	25	12.5
g -	Streptococcus pyogenes Cook	0.39	0.1	0.78	≥0.006	0.78	0.1
-	Enterococcus faecalis 1373	0.39	0.2	0.78	0.05	1.56	0.2
-	Escherichia coli NIHJ JC-2	1.56	0.39	3.13	0.05	0.1	0.05
(-)	Escherichia coli ML4707	0.05	≥0.006	0.05	0.025	0.025	0.013
ure	Escherichia coli CSH2/RK1	25	3.13	>12.5	0.39	0.78	0.39
Gra	Escherichia coli CSH2/RE45	25	3.13	>12.5	0.39	0.78	0.39
	Klebsiella pneumoniae No.42	3.13	0.39	6.25	0.1	0.2	0.025
	Klebsiella pneumoniae KC-1	1.56	0.2	1.56	0.1	0.05	0.025
	Klebsiella oxytoca GN10650	3.13	0.39	6.25	0.1	0.1	0.05
	Proteus vulgaris No.33	1.56	0.39	3.13	0.1	0.05	0.05
	Proteus vulgaris KS-134	001	100	>12.5	50	20	>12.5
	Proteus mirabilis JY-10	0.39	0.2	0.78	0.05	0.05	0.05
	Serratia marcescens No.16-2	12.5	3.13	>12.5	0.39	0.78	0.39
	Enterobacter cloacae Nek39	6.25	1.56	12.5	0.39	0.39	0.2
	Citrobacter freundii No.7	25	3.13	>12.5	0.39	0.39	0.39
	Citrobacter freundii KP-29	>100	001	>12.5	12.5	20	>12.5
	Acinetobacter calcoaceticus No.4	1.56	0.2	1.56	0.2	0.78	0.025
	Pseudomonas aeruginosa PAO1	12.5	6.25	>12.5	0.78	1.56	0.39
	Pseudomonas aeruginosa AK109	12.5	6.25	>12.5	0.78	1.56	0.39
	Pseudomonas aeruginosa KP-254	>100	>100	>12.5	100	>100	>12.5
	Pseudomonas aeruginosa K-13	20	25	>12.5	6.25	12.5	6.25
	Burkholderia cepacia 23	3.13	1.56	3.13	1.56	3.13	0.78

 $^{\it a}$ methicillin-resistant strain. $^{\it b}$ quinolone and methicillin-resistant strain.

considered as positive at a dose of 50 mg/kg [15]. Based on these results, it was shown that the *hrans*-analog 11c was the best compound posessing superior activity against quinolone-resistant SA with sufficient safety [16]. The chirality on the pyrrolidine ring slightly affected the antibacterial activity. Thus, (3R,4S)-11c [17] had antibacterial activity similar to that of the racemate 11c and was about 2-8-fold more active than its enantiomer.

In conclusion, we demonstrated the efficacy of the introduction of the trifluoromethyl group to the pyrrolidine ring at the 7-position of the quinolone nucleus and selected (3R,4S)-7-(3-aminomethyl-4-trifluoromethyl-1-pyrrolidinyl)-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-4-oxoquinoline-3-carboxylic acid hydrochloride ((3R,4S)-11c, S-34109) as the most promising candidate for further studies.

Acknowledgment: The authers wish to thank Ms. Yayoi Watanuki for her technical assistance and Mr. Junichi Yoshida and Mr. Yuji Ito for the micronucleus testing.

References and notes

- [1] For a review, see: Mitsuhashi S, Ed. Fluorinated Quinolones New Quinolone Antimicrobials. In Progress in Drug Research; Birkhäuser Verlag: Basel, 1992;38:10-147.
- [2] Forstall GJ, Knapp CC, Washington JA. Antimicrob. Agents Chemother. 1991;35:1679-1681.
- [3] Suto MJ, Domagala JM, Roland GE, Mailloux GB, Cohen MA. J. Med. Chem. 1992;35:4745-4750.
- [4] Domagala JM J. Antimicrob. Chemother. 1994;33:685-706.
- [5] Matsumoto M, Kojima K, Nagano H, Matsubara S, Yokota T. Antimicrob. Agents Chemother. 1992;36:1715-1719.
- [6] Bégué J-P, Bonnet-Delpon D, Lequeux T. Tetrahedron Lett. 1993;34:3279-3282.
- [7] The synthesis of **5b** and **5c** in a way similar to ours has been recently reported: Li Q, Wang W, Berst KB, Claiborne A, Hasvold L, Raye K, Tufano M, Nilius A, Shen LL, Flamm R, Alder J, Marsh K, Crowell DA, Chu DTW, Plattner JJ. Bioorg. Med. Chem. Lett. 1998;8:1953-1958.
- [8] Huang Y, Shen Y, Xin Y, Wang Q, Wu W. Acta Sci. Sin. Ser. B 1982;25:21-28.
- [9] Iwata M, Kimura F, Fujiwara Y. Jpn. Kokai Tokkyo Koho JP 3-7261.
- [10] The optical purity of 13 was determined by HPLC analysis. 13: $[\alpha]_{\rm p}^{3.5} = -17.5^{\circ} (c \ 1.00, \ \text{MeOH})$.
- [11] Fukui H, Kobayashi K, Nakata T, Shibata T, Naito T, Nakano J. Anal. Sci. 1997;13:689-691.
- [12] MICs were determined in accordance with the method of the MIC Committee of the Japan Society of Chemotherapy; Chemotherapy 1981;29:76-79.
- [13] Determination of IC₅₀; Confluent monolayer of HeLa cells (human cervical cancer cell line) was cultured in the presence of a serial 2-fold dilution of each drug for 3 days. The viability was determined by MTT method [14]. The drug concentration whose absorbance at 540 nm indicates 50% of the drug-free control was designated as IC₅₀.
- [14] Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K. J. Immunol. Method. 1986; 93:157.
- [15] Micronucleus test: Male Crj:CD-1 mice (8weeks old) were intraperitoneally given test drugs (suspension in olive oil) twice. The peripheral blood was collected from a tail blood vessel at 24-h intervals from 0 to 72 h after the first administration. Blood smear preparations were made by staining with acridine orange. Micronucleated reticulocytes (MNRETs) were observed with fluorescent microscopy. The group which showed the higher MNRET frequency than that before the administration was considered as positive.
- [16] Maejima T, Senda H, Iwatani W, Tatsumi Y, Arika T, Fukui H, Shibata T, Nakano J, Naito T. 35th ICAAC 1995; Abstract No.F189.
- [17] (3R,4S)-11c: $[\alpha]_D^{34} = +9.2^{\circ}$ (c 0.50, MeOH). ¹H-NMR (270 MHz, DMSO-d₆) δ (ppm): 1.04-1.15 (m, 4H), 2.77-2.82 (m, 1H), 2.94-3.12 (m, 2H), 3.37-3.40 (m, 1H), 3.50-3.56 (m, 1H), 3.64 (s, 3H), 3.68 (dd, J = 11.1, 4.5 Hz, 1H), 3.86-3.95 (m, 2H), 4.16-4.17 (m, 1H), 7.75 (d, J = 13.2 Hz, 1H), 8.33 (s, 3H), 8.70 (s, 1H), 14.94 (s, 1H).